Charles Fisher on Using Digital Twins to Speed Clinical Trials

Episode Summary

Charles Fisher is the founder and CEO at Unlearn, a San Francisco company using purpose-built machine learning algorithms that use historical clinical trial data to create “digital twins” of actual participants in randomized controlled drug trials to help predict how each participant would have fared if they’d been given a placebo. By comparing a patient’s actual record to their digital twin, Fisher says, the company can estimate the treatment effect at the patient level and conduct trials with fewer placebo patients.

Episode Notes

Charles Fisher is the founder and CEO at Unlearn, a San Francisco company using purpose-built machine learning algorithms that use historical clinical trial data to create “digital twins” of actual participants in controlled drug trials to help predict how each participant would have fared if they’d been given a placebo. By comparing a patient’s actual record to their digital twin, Fisher says, the company can pinpoint the treatment effect at the patient level and conduct trials with fewer placebo patients. Fisher tells Harry that Unlearn’s software can help drug companies run clinical trials “twice as fast, using half as many people.”

Fisher’s own history is somewhat unconventional for someone in the pharmaceutical business. He holds a  B.S. in biophysics from the University of Michigan and a Ph.D. in biophysics from Harvard University. He was a postdoctoral scientist in biophysics at Boston University and a Philippe Meyer Fellow in theoretical physics at École Normale Supérieure in Paris, France, then went on to work as a computational biologist at Pfizer and a machine learning engineer at Leap Motion, a startup building virtual reality interfaces.

Unlearn built a custom machine-learning software stack because it wasn’t convinced existing ML packages from other companies to help in the simulation of clinical data. Fisher says the company focuses on the quality rather than the quantity of its training data, with a preference for the rich, detailed, longitudinal kind of data that comes from past clinical trials. The outcome is a simulated medical record for each treated patient in a trial,  in the same data format used for the trial itself, that predicts how that patient would have responded if they had received a placebo instead of the treatment. These simulated records can be used to augment existing randomized controlled trials or provide an AI-based “control arm” for trials that don’t have a placebo group.

Please rate and review MoneyBall Medicine on Apple Podcasts! Here’s how to do that from an iPhone, iPad, or iPod touch:

• Launch the “Podcasts” app on your device. If you can’t find this app, swipe all the way to the left on your home screen until you’re on the Search page. Tap the search field at the top and type in “Podcasts.” Apple’s Podcasts app should show up in the search results.

• Tap the Podcasts app icon, and after it opens, tap the Search field at the top, or the little magnifying glass icon in the lower right corner.

• Type MoneyBall Medicine into the search field and press the Search button.

• In the search results, click on the MoneyBall Medicine logo.

• On the next page, scroll down until you see the Ratings & Reviews section. Below that, you’ll see five purple stars.

• Tap the stars to rate the show.

• Scroll down a little farther. You’ll see a purple link saying “Write a Review.”

• On the next screen, you’ll see the stars again. You can tap them to leave a rating if you haven’t already.

• In the Title field, type a summary for your review.

• In the Review field, type your review.

• When you’re finished, click Send.

• That’s it, you’re done. Thanks!